Pattern formation (II): The Turing Instability

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Formation (ii): the Turing Instability

1. Growing modes in a reaction-diffusion system In this section we summarize the classical linear Turing instability criterion for a reaction-diffusion system. Consider a reaction-diffusion system of 2-species as ∂U ∂t = ∇ · (D1 (U,V )∇U) + f (U,V ) , (1.1) ∂V ∂t = ∇ · (D2 (U,V )∇V ) + g (U,V ) , where U (x,t) ,V (x,t) are concentration for species, D1, D2 diffusion coefficients, f, g reaction ...

متن کامل

Turing Pattern Formation without Diffusion

The reaction-diffusion mechanism, presented by AM Turing more than 60 years ago, is currently the most popular theoretical model explaining the biological pattern formation including the skin pattern. This theory suggested an unexpected possibility that the skin pattern is a kind of stationary wave (Turing pattern or reaction-diffusion pattern) made by the combination of reaction and diffusion....

متن کامل

Pattern formation in generalized Turing systems

Turing's model of pattern formation has been extensively studied analytically and numerically, and there is recent experimental evidence that it may apply in certain chemical systems. The model is based on the assumption that all reacting species obey the same type of boundary condition pointwise on the boundary. We call these scalar boundary conditions. Here we study mixed or nonscalar boundar...

متن کامل

Pattern Formation in Quantum Turing Machines

We investigate the iteration of a sequence of local and pair unitary transformations, which can be interpreted to result from a Turing-head (pseudo-spin S) rotating along a closed Turing-tape (M additional pseudo-spins). The dynamical evolution of the Bloch-vector of S, which can be decomposed into 2M primitive pure state Turing-head trajectories, gives rise to fascinating geometrical patterns ...

متن کامل

Turing Instability and Pattern Formation in a Semi-discrete Brusselator Model

In this paper, a semi-discrete Brusselator system is considered. The Turing instability theory analysis will be given for the model, then Turing instability conditions can be deduced combining linearization method and inner product technique. A series of numerical simulations of the system are performed in the Turing instability region, various patterns such as square, labyrinthine, spotlike pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2007

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-07-08850-8